Tetrahedron Letters No.18, pp. 1975-1978, 1966. Pergamon Press Ltd. Printed in Great Britain.

c¹³ NMR SPECTRA OF ORGANOPHOSPHORUS COMPOUNDS; DETERMINATION OF SUBSTITUENT CONSTANTS FOR PHOSPHORUS CONTAINING GROUPS

H. L. Retcofsky and C. E. Griffin

Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15213

(Received 21 February 1966)

Systematic investigations of carbon shieldings in organophosphorus compounds are conspicuously absent from the literature of NMR spectroscopy. Despite recent advances in organophosphorus chemistry, the electronic structures of these compounds are not well understood and little quantitative data on the electron attracting or donating ability of phosphorus substituents are available.¹ The demonstrations of empirical correlations between carbon shielding and electronic distributions in molecules^{2,3} prompted us to obtain and analyze the c¹³ NMR spectra of selected organophosphorus compounds. We wish to report the C¹³ chemical shifts of <u>para</u> carbons in C₆H₅PZ_n structures and the derivation of substituent constants (σ_p , σ_p^+) for the -PZ_n groups from this data.

Spiesecke and Schneider have shown that the general trend of <u>para</u> carbon shieldings (δ_p) in monosubstituted benzenes is consistent with that expected from changes in π -electron density at the <u>para</u> carbon atom; a near linear correlation with Hammett substituent constants (σ_p) was obtained.³ Although these authors explicitly state that the scatter of individual datum is sufficiently great that the usefulness of the correlation is limited, a statistical analysis of their data revealed that the root-mean-square of the σ_p -deviations about the curve resulting from a least squares fit was only

1975

0.16. The largest deviation for a single σ_p value was 0.26, the range of values studied being -0.83 to +0.778. Such deviations, though by no means trivial, are not so large as to preclude the approximation of σ_p constants by this method. For substituents (e.g. $-PZ_n$) for which only a very few reactivity constants are available in the literature, approximate values can be derived from δ_p . These values should possess sufficient validity to serve as useful guidelines until determinations of substituent constants by conventional methods are made.

The determination of σ_p values by chemical methods has been reported for only four -PZ_n groups: -PO₃H⁻ (+0.17), ⁴ -PO₃⁻ (-0.16), ⁴ -PO₂H⁻ (+0.14)⁵ and -P(0)(OC₂H₅)₂ (+0.60). ⁶ Unfortunately, the limited solubility in basic solution of the acids necessary for the determination of σ_p for the first three groups prevented C¹³ NMR studies. However, the spectrum of $C_{6+5}P(0)(OC_2H_5)_2$ was obtained; δ_p indicated a σ_p value of +0.55 (Table I) which is in good agreement with the reported value (+0.60). δ_p were measured for nine additional compounds and, with the exception of dimethyl phenyl phosphate, proved to be less than the shielding in benzene indicating π -electron densities at the para carbon to be ≤ 1 and σ_p to be ≥ 0 . These results indicate these substituents to be moderate to weak electron attractors in accord with expectation. ¹ σ_p constants calculated from δ_p for all compounds investigated are given in Table I.

Although σ_p constants have been determined chemically for only one of the ten substituent groups investigated, σ_p^+ values have been measured recently for two of these groups; a competitive free radical bromination procedure was employed.^{1b} An attempt to correlate the data of Spiesecke and Schneider with σ_p^+ values was undertaken and resulted in a least squares fit at least as good as that for the σ_p constants, although the relationship proved to be non-linear. σ_p^+ values obtained from δ_p for the ten organophos-

TABLE I.

Para Carbon Shieldings and Chemical Reactivity Parameters for C_kH_sPZ_

PZ_p	Para Carbon Shielding		+
-P(C6H5)2	-5.9	0.68	0.70
-PC12	-4.9	0.61	0.62
-P(0)(0C2H5)2	-4.0	0.55	0.54
-P(0)(C6H5)2	-3.8	0.53	0.52
-P(C1)C6H5	-2.5	0.44	0.40
-P(0)C12	-2.3	0.43	0.38
-P(S)C12	-1.8	0.39	0.33
-P(0C2H5)2	-1.0	0.33	0.24
-P(OC2H5)(C6H5)	-0.9	0.32	0.23
-OP(0)(OCH_3)2	+2.8	0.04	-0.21

The spectra of triphenylphosphine and the oxide were determined on solutions in CS₂ and acetone, respectively; all other spectra were determined on neat samples.

^bIn p.p.m. from benzene.

phorus groups are also given in Table I. The spectrometrically obtained values for $-P(0)(0C_2H_5)_2$ (+0.54) and $-P(0)(C_6H_5)_2$ (+0.52) agree reasonably well with the chemically determined values (+0.62 and +0.49).^{1b} In the absence of independent confirmation, σ_p and σ_p^+ values for the $-PZ_n$ groups of Table I must be used cautiously and considered to be only approximate. However, it must be pointed out that the inherent chemical sensitivity of certain of these groups may prevent the determination of substituent constants by chemical reactivity studies. In these cases, spectrometric methods may represent the only feasible approaches to these determinations. C^{13} NMR studies of selectively deuterated analogs are in progress in order to provide unambiguous assignments of the <u>ortho</u> and <u>meta</u> C^{13} NMR signals.

Acknowledgement. The authors wish to acknowledge the cooperation of Dr. R. A. Friedel, Pittsburgh Coal Research Center, U. S. Bureau of Mines. Many of the compounds studied were provided by Drs. V. A. Notaro and W. M. Daniewski. This study was supported in part by the Directorate of Chemical Sciences, Air Force Office of Scientific Research under Grant No. AF-AFOSR-470-64.

REFERENCES

- 1. For summaries of the available quantitative data $(\sigma, \sigma^+, \sigma^+)$, see (a) D. J. Martin and C. E. Griffin, <u>J. Org. Chem.</u>, <u>30</u>, 4034 (1965); (b) R. B. Daviaon, Fh.D. Thesis, University of Pittsburgh, 1965.
- P. C. Lauterbur, J. Am. Chem. Soc., <u>83</u>, 1838 (1961); <u>idem</u>, <u>Tetrshedron</u> <u>Letters</u>, 274 (1961).
- H. Spiesecke and W. G. Schneider, <u>Tetrahedron Letters</u>, 468 (1961); <u>idem</u>, <u>J. Chem. Phys.</u>, <u>35</u>, 731 (1961).
- H. H. Jaffe, L. D. Freedman and G. O. Doak, <u>J. Am. Chem. Soc.</u>, <u>75</u>, 2209 (1953).
- 5. L. D. Quin and M. R. Dysart, <u>J. Org. Chem</u>., <u>27</u>, 1012 (1962).
- 6. L. D. Freedman and H. H. Jaffe, J. Am. Chem. Soc., 77, 920 (1955).